10.2 ERARIEFNSERE

*66. Show that if G is a bipartite simple graph with v vertices and e edges, then e < V/4.
Solution:
=D EBEER e<V/4

v=vitvy;, EFFEIE J deg(v)=2¢;

Bipartite Graph, deg(vi)Svi*vz;deg(v.2) Sva*vs;

vikv, S v/2 % v/2 = V'/4

e = Sdeg(v) /2 = (deg(vi)+deg(v2))/2 Svixv, < v'/4

74. In a variant of a mesh network for interconnecting n = m2 processors, processor P (i, j )is
connected to the four processors P ((i £ 1) mod m, j ) and P (i, (§ £ 1) mod m), so that
connections wrap around the edges of the mesh. Draw this variant of the mesh network for
16 processors.

Solution:

In addition to the connections shown in Figure 13, we need to make connections between P(i,
3) and P(i, 0) for each i, and between P(3, j) and P(0, j) for each j . The complete network is
shown here. We can imagine this drawn on a torus.

10.3 ERNR~FE R

50. Suppose that G and H are isomorphic simple graphs. Show that their

complementary graphs G and H are also isomorphic.

Solution:
since G(V1,E1) = H(V2,E2),

exist a f: V1->V2zis bijection, all (u,v)eE+ iff (f(u),f(v))eEz.
U-G(V1,~E1), U-H(V2,~E2), same f: V1->V2,
since an edge is in U-G iff it is not in G,

(u,v)e~En iff (u,v)gE1 iff (f(u),f(v))gEziff (f(u),f(v)) e~E2
so all (u,v)e~En iff (f(u),f(v)) e~E2
Hence U-G(V1,~E1) = U-H(V2,~E2)

*56. Show that if G is a self-complementary simple graph with v vertices, then v



= O or 1 (mod 4).
Solution: if G and U-G is isomorphism,named self-complementary.
Because G and U-G is isomorphism, e;=e.
E:NE.=, so |EiUE,| = e;+e,=2e; .
since the union of the two graphs is Kn.
Kn: e=n*(n-1)/2. so ei=e,=e/2=n*(n-1)/4.
n must be integer, so n*(n-1)=4m, m is a integer.

=>nmod4 =0, or 1.

*74. How many nonisomorphic directed simple graphs are there with n vertices,

when nis a) 27 b) 3?7 ¢) 4?

Solution: (RBEEFIR)
nonisomorphic directed simple graphs
n=2, s(n)=1(e0)+1(el)+1(e2)=3;

n=3, s(n)=1+1+4+4+4+1+1=16;
n=4,s(n)=1+1+4+8+10+2+3+1+1=31;

104 ERERME
*28. Show that every connected graph with n vertices has at least n — 1 edges.
Proof: IEfA n SAEREZEDE n-1 %&b
We show this by induction on n. For n = 1 there is nothing to prove.
Now assume the inductive hypothesis, and let G be a connected graph with n
+1 vertices and fewer than n edges, wheren = 1. > deg(v)=2e <2n <2(n+1);
Therefore some vertex has degree less than 2. Since G is connected, this vertex

Is not isolated, so it must have degree 1.



Remove this vertex and its edge. Clearly the result is still connected,
and it has n vertices and fewer than n—1 edges,
contradicting the inductive hypothesis. Therefore the statement holds for G, and

the proof is complete.

*36. Show that a vertex c in the connected simple graph G is a cut vertex if and
only if there are vertices u and v, both different from c, such that every path
between u and v passes through c.

Prove: ZBEREEMNE S c TEKXHREERBELARET c

if ¢ is a cut vertex, Since the removal of ¢ increases the number of components,
there must be two vertices in different components. Then every path between
these two vertices has to pass through c.

if uand v are as specified, then they must be in different components of the graph
with ¢ removed. Therefore the removal of ¢ resulted in at least two components,

SO C is a cut vertex.

60. Show that the existence of a simple circuit of length k, where k is an integer
greater than 2, is an invariant for graph isomorphism.

Proof: IEBRKEN k VR EEEEFEAETE

Suppose that f is an isomorphism from graph G to graph H. If G has a simple

circuit of length k, say ul,u2,..,ukul. since each edge uu.: (and uwi) in G

corresponds to an edge f(u)f(u1) (and f(uy)f(us)) in H.



Furthermore, since no edge was repeated in this circuit in G, no edge will be

repeated when we use f to move over to H.

10.5 B [l BEFNRG 21900 [ B

*16. Show that a directed multigraph having no isolated vertices has an Euler circuit if and
only if the graph is weakly connected and the in-degree and out-degree of each vertex are
equal.

Proof: HEEIEBREIEEE iff 551%8H all deg’(vi)=deg (v).

First suppose that the directed multigraph has an Euler circuit. the graph must be strongly
connected. as the circuit passes through a vertex, it adds one to the count of both the in-
degree and the out-degree.

Conversely, suppose that the graph meets the conditions stated. Then we can proceed as in
the proof of Theorem 1 and construct an Euler circuit.

10.6 ERBRAEE{EEIA

10.7 FHEMERFMAE

8. determine whether the given graph is planar. If so, draw it so that no edges

Cross.
a b
h c
g d
s e
Solution:

A2¥EE, AFEARESES K3 K FERETE.
Vi={ace}, X V2={b,d,f}, TTIAMIAL Kszs FE.

10.8 AEEE

10. find the chromatic number of the given graph.



Solution:
Since vertices b, ¢, h, and i form a Ka, at least 4 colors are required. A coloring using only 4
colorsistoletaand c bered; b, d, and f, blue; g and i, green; and e and h, yellow.

23. Find the edge chromatic numbers of
a) C,, wheren = 3.

b) W,, wheren = 3.

Solution:

a) 2 if nis even, 3 if nis odd.

REFPEIRXEREN, FTUAZEER, E22EZRFHMNE, B3 &,

b)n

BEMNFHRLKREKNEA, IAFTEnE, FRUEEE 253, BEEBA=-AETREKF
Gnge. BAn—E>2URBEHPNEERE n ZRNIEFEB.



WFEEEB LR 13, 14, 15, 16;

In Exercises 13 through 16 (Figures 8.111 through 8.114), find
the chromatic polynomial Py; for the given graph and use Pg

to find x(G).
13. 14.
Figure 8.111
Figure 8.112
15. 16,
Figure 8.113 Figure 8.114
Solution:

13. Pg(x) = x(x — I)(x = 2)% x(G) =3.
15, Pa(x) =x(x = D(x —2(x — 3); x(G)=4.

14.Pe(x)=x(x-1)(x-2)(x-3). X(G)=4.

16. Po(X)=(x-2)PCs(x)=x(x-1)(x-2)(x’-4x"+6x-4)

<BREEEH>PB LRRAREREX 10,14@P305;

10. find a maximum flow in the given network by using the labeling algorithm.

Solution: JFRIE BEIZHEININE.
N1={2,3,4} N2={5,6,7}, path 1-4-7, -3.



N1={2,3} N2={4,5,6} N3={7}, path 1-2-4-7, -3

121]

18,11 8.3]
N1={2,3} N2={4,5,6} N3={7}, path 1-2-5-7, -3

[6.1]

18,11 8.3]
N1={2,3} N2={4,6} N3=({5,7}, path 1-3-6-7, -4

13.1] [1.4]

8.1 18.3]
N1={2,3} N2={4,6} N3={5} stop. maxflow=13

13.1] 11.4]

RAMKITE A

14. find a maximum flow in the given network by using the labeling algorithm.



Y
h

f
(o)}

Solution: minimal cut K={(1,2),(1,3)}, maxflow=5.
ARE BRENEIINT.
N1={2,3} N2={4,6}, path 1-3-6, -2.
N1={2} N2={3,4} N3={6}, path 1-2-3-6, -2
N1={2} N2={4} N3={3,5} N4={6}, path 1-2-4-3-6, -1
N1={} stop. maxflow=5

RAM

BHEXR 81

8.1: 14. a) Find a recurrence relation for the number of ternary strings of length
n that contain two consecutive 0s.
b) What are the initial conditions?

¢) How many ternary strings of length six contain two consecutive 0s?

RE:

a) Let a, be the number of ternary strings that contain two consecutive 0's.
To construct such a string we could start with either a 1 or a 2 and follow with a string

containing two consecutive 0's (and this can be done in 2a,-: ways), or we could start with 01
or 02 and follow with a string containing two consecutive 0’s (and this can be done in 2a,--
ways), we could start with 00 and follow with any ternary string of length n — 2 (of which there

are clearly 3" %). Therefore the recurrence relation, valid for all n = 2, is @, = 2a,-1 + 2a,-» +



3.

AR KEn-2EE3#BIEF 3" IN00 EAEMKE.

KEn-151ERFEMO0, £F'n-2 H+004IBEE, thEiE, RE+1/+2 W,
KEn-2 5RBEEMOL, 02, SMKEN-1 XEONEEROEEE, BEE,;
KEn-2 5BEFEMLIH 2, SFEH n-1&51&H, EEEE, RFHEMN 12 mF;

b) Clearly a» = a: = 0.

c) We will compute a: through as using the recurrence relation:
a=2a+2a+3=20+2-0+1=1
as=2a,+2a:+3=2-1+2-0+3=5
a:=2as+2a:+3=2-5+2-1+9=21
as=2ai+2a:+3=2-21+2-5+27=79
as=2as+2a:+3'=2-79+2.21+81=281

Thus there are 281 bit strings of length 6 containing two consecutive 0's.

8.2 A BKBFTREELR

*10. Prove Theorem 2.

Proof of Theorem 2

(S szln—z - . =
= mn— mn— = n—
=qlmrg  tain-Drg ) tolan * +a(n—2)py °)
—aie lon to) o el o) oo ot 2t
—wrT frttant, rots o P2
: -b ¢
Because 1, is repeated root, b? — 4ac = ¢;? + 4c; = 0, ry= = =?1 :
c c1244c
(61?‘0 + 2C2)= Cqy ?1 + 2C2 = S =0
= a1yt + aznry
= an
a[} = C[} = (11
a1 = Cl = alro + azro
C1—CoTo
a;=Cy, e
0

42. Show that if 8,=a,.:*+a,-53,=5,8:=t, where s and t are constants, then &, = s/,-;
+tf, for all positive integers n.

Proof: We can prove this by induction on n.

base step : If n = 1, then the assertionisa: =s- o+t - ,=s-0+t-1 =t whichis given;
and if n = 2, then the assertionis a-=s-fA+t-£H=s-1+t-1=5s+t¢
which is true, since @a-= a: + as =t + s.



inductive step: we assume the inductive hypothesis, that the statement is true for values less
than n.

Then @,=@s1+8@n2= (Sth-2 + ths) + (St—3 + th2) = 5(7;—2 + Fhs) + tlh-1 + 10

= Sf,-; + 1, , as desired.

46. Suppose that there are two goats on an island initially. The number of goats
on the island doubles every year by natural reproduction, and some goats are
either added or removed each year.

a) Construct a recurrence relation for the number of goats on the island at the
start of the nth year, assuming that during each year an extra 100 goats are put
on the island.

b) Solve the recurrence relation from part (a) to find the number of goats on the
island at the start of the nth year.

c) Construct a recurrence relation for the number of goats on the island at the
start of the nth year, assuming that n goats are removed during the nth year for
eachn = 3.

d) Solve the recurrence relation in part (c) for the number of goats on the island
at the start of the nth year.

Solution:

Let &, represent the number of goats on the island at the start of the n" year.

a) The initial condition is @; = 2; we are told that at the beginning of the first year there are

two goats. During each subsequent year (year n, with n = 2 ), the goats who were on the

island the year before (year n — 1) double in number, and an extra 100 goats are added in.

SO an:ZHH,J + lOO



n

b) The associated homogeneous recurrence relation is @,=2a,.;, whose solution is &”, = a2" .
The particular solution is a polynomial of degree 0, namely a constant, 4@, = c.

Plugging this into the recurrence relation gives ¢ = 2¢ + 100, whence ¢ = —100.

So the particular solution is &”, = =100 and the general solution is &,= a2" = 100.

Plugging in the initial condition and solving for a gives us 2 = 2a — 100, then o = 51.

Hence the desired formula is 8,= 51 -2" = 100. There are 51 - 2" — 100 goats on the island at
the start of the n” year.

c) We are told that g; = 2, but that is not the relevant initial condition. Instead, since the first

two years are special (no goats are removed), the relevant initial condition is - = 4. During
each subsequent year (year n, with n = 3), the goats who were on the island the year before

(year n — 1) double in number, and n goats are removed. So &,=2a,.; — n. (We assume that

the removal occurs after the doubling has occurred; if we assume that the removal takes place

first, then we'd have to write a 8,=2(@,.. = nN) = 2 @,.; — 2n.)

d) The associated homogeneous recurrence relation is @,=24,;, whose solution is a”, = a2" .
The particular solution is a polynomial of degree 1, say @, = cn + d. Plugging this into the
recurrence relation and grouping like terms gives (—c + 1)n + (2c — d) = 0, whence c = 1 and
d = 2. So the particular solution is &7, = n + 2 and the general solution is @,= a2" + n + 2.
Plugging in the initial condition &> = 4 and solving for o gives us 4 = 4o + 4, or a = 0. Hence

the desired formula is simply @,=n + 2 foralln = 2 (and @ = 2). There are n + 2 goats on

the island at the start of the n th year, foralln = 2.
NVARE BN
REX 8.3

14. Suppose that there are n = 2“ teams in an elimination tournament, where

there are n/2 games in the first round, with the n/2 = 2“=* winners playing in the



second round, and so on. Develop a recurrence relation for the number of rounds
in the tournament.

Solution:

If there is only one team, then no rounds are needed, so the base case is A7) = 0. Since it
takes one round to cut the number of teams in half, we have R(n) = 1 + R(n/2).

36. Find f (n) when n = 2°, where f satisfies the recurrence relation f (n) = 8f (n/2)
+n’with f(1) = 1.

Solution:

From Exercise 31 (note that herea = 8, b =2,¢c=1,and d = 2 ) we have f(n) = —=7° + 2n"*

= -7 +2n

A R PR Y 8.4

16. Use generating functions to find the number of ways to choose a dozen bagels from three
varieties—egg, salty, and plain—if at least two bagels of each kind but no more than three
salty bagels are chosen.

Solution: Use generating functions to find the number of ways to choose a dozen bagels

from three varieties—egg, salty, and plain—if at least two bagels of each kind but no more
than three salty bagels are chosen.
X1tXetXs=12, X122, 2% <3, xa=2.
O+ + X+ ¢ A+ X+ X +++) find the coefficient of x
LXK + 5+ X+ ) (1+x)
=X (1+x)/(1-x)° =x° (1/(1-x)° +x/(1-x)*)
find the coefficient as+asof 1/(1-x)*
as=7,as=6, answer: as+as=13.

12

36. Use generating functions to solve the recurrence relation ax = a-: + 2ak-» + 2° with initial
conditions a=4 and & = 12.

Solution:

06X = axt



(2) G(X) —xG(x) - 2X*G(x) = X_a,x* — x> ax —2x*) a,x"
k=0 k=0 k=0
= Zakxk =Y a X =Y 2a ¢
k= k=2
=(ay

k

+a,X) +(—apX) + Z(ak =8, ;28 ;)X
=2

=3y +aX—aX+ . 2“x*

k=2
=4+12x—4x+ (D 2x - 2°x° - 2'x")
k=0
=4+8x+ -1-2x _4- 127
1-2x 1-2x
4 -12x?
4-12x? _—8/9  38/9 2/3

3G(x) = 172X = - = + + ;
1-x—2x (A-2x)°(1+x) 1+x 1-2x (1-2x)

—8/9)(—1)* x* +Z(38/9)2“x“ +(2/3)Z(22'2k DS

k=0 j=0

~

2
S EDED + (2 + 2@k +)xt

Soa, = (—8/9)(-1)* + (38/9)2" + (2/3)(k +1)2



